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Moment quantization and (A-adic) discrete—continuous
wavelet transform theory

C R Handy and R Murenzi

Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta
University, Atlanta, GA 30314, USA

Abstract. We establish how moment quantization directly leads to a completal(c) discrete—
continuous wavelet transform theory in contrast to the approximate reconstruction methods
published earlier (199Bhys. RevA 543754, 1997. Phys. A: Math. Gen304709).

1. Introduction

Wavelet transform theory (Chui 1992) defines an efficient multiscale tool with regards to
the time-frequencyor space-scal@nalysis of images and signals, detection and recognition
of objects (Antoineet al 1995), and the numerical analysis of many-body quantum systems
(Tymczak and Wang 1997). Whereas Fourier analysis is inappropriate for studying localized
(transient) structures, wavelets are specifically well adapted to address such problems ever since
the formulation by Grossmann and Morlet (1984). These general observations apply to all three
types of wavelet formalisms: (i) the continuous wavelet transform (CWT); (ii) the discretization
of CWT, to be referred to as DCWT (Daubechies 1991); and (iii) the purely discrete formulation
(DWT), as represented through Daubechies’ pioneering work with orthnormal wavelets (1988).

Wavelet analysis is an intrinsically multiscale formalism for analysing important,
localized, transient effects. An important class of problems that can benefit from such
analytical tools are those corresponding to dimger Hamiltonians with strongly coupled
interactions, or those requiring semiclassical analysis. These systems are sensitive to the
singular perturbation (Bender and Orzag 1978) contributions associated with the underlying
turning points (hypersurfaces). Such (multidimensional) problems can be studied through
wavelet methods based in part on the formalism presented here (ldaat999).

For such types of continuous systems, the corresponding continuous structure of both
CWT and DCWT highly recommends them as appropriate analytical/numerical tools. This is
a welcomed contribution, since relatively little work had been done, during the formative
‘wavelet’ years, in incorporating CWT and DCWT into quantum operator theory (Paul
1984, Plantevin 1992). An important limitation had been the overcomplete nature of the
underlying wavelet basis and their nonorthogonality. Through the adoption of a moment-based
reformulation, one can circumvent these difficulties. In contrast, through the development of
discrete orthonormal wavelets, DWT has established itself as a very powerful tool in the
multiresolution analysis of discrete systems.

The recent works by Handy and Murenzi (HM) (1996, 1997, 1998a, b, 1999) mark a
significant first step in the systematic integration of CWT (and DCWT, as developed in this
paper) into quantum mechanics. This has primarily come about through the discovery of the
important, complementary, role moment quantization (MQ) (Tymetad 1998a, b, Handy
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etal1988a, b) plays in facilitating the incorporation of CWT/DCWT methods in the analysis of
Schibdinger operator problems with rational fraction potentials. Almost all physical processes
can be described by such potentials (or transformed into such form); therefore, these define a
sufficiently broad class of relevant and important problems. For such systems, as established
in the very recent work by HM (1998a, b), MQ and CWT are equivalent and inseparable.

The preceding narrative may suggest that MQ is to be defined only through the works
cited. However, the broader connotation of MQ, as implied here, is to also refer to
all techniques for determining the physical values for the scaled and translated moments
Uap(p) = [dx xl’g("a;”)\IJ(x), involving the desired configurationy, and a specified
function, G (which can either be a scaling functiaf, or the generator corresponding to a
given mother wavelefunction, W = 3°G). These are discussed below. For a sufficiently
broad class ofj-functions, the underlying linear (Sdidinger) differential equation can be
transformed into a closed, coupled set of linear (partial) differential equations (with respect
to the scaleq, and translationp, variables) involving thes, ,(p). The importance of such
moment differential relations had been overlooked by the CWT community, in general, but
conveniently exploited in the works by HM.

Given the equivalency between MQ and CWT, as established by HM’s earlier works,
the major contribution of this work is the extension of this philosophy to the DCWT case as
well. From the perspective of MQ, we present an MQ-DCWT formalism that is immediately
accessible, and which serves to clarify the approximate nature of previous efforts (HM 1996,
1997), as viewed from the MQ perspective.

In order to facilitate logical progression in this work, we quickly review the essential
underlying formalism, and outline the results to be derived.

LetQ(x) = Ziﬁo E(n)x" be a given, even degree, polynomial satisfy@) = 1, and
E(2N) > 0. Define the scaledi(> 0) and translated(e (—oo, +00)) moments,

Iap(p) = / dr x”e W (x +b) (1.1)

of the (unknown) bound state wavefunctioh, According to HM (1996, 1997, 1998a, b,
1999), for one-dimensional Sadinger potential problems with rational fraction potentials,
these moments will satisfy@ +m,)-dimensionalf:, is problem dependent), linear, first-order
coupled differential equation with respect to the inverse scale variaéble,

01 i = Mla. b, Eliis (1.2)

wherefi, , = (a5, ..., nap(ms)). The matrixMla, b, E] is readily determinable and
depends on the energy variablg, as well. The moments involved in equation (1.2) are
referred to as themissing momentsThese coupled equations define an initial value problem in
which knowledge of the physical values fox, , andE enable the generation of all moments,
for all scale and translation parameter values. fhe, and E are determined through MQ
analysis.

In the zero-scale limit, the asymptotic behaviour of the moments can be used to recover
W (b):

Lim,—oitas(p) = a**Pv(p)¥ (b) (1.3)

providedv(p) = [ dx xPe 2™ = 0. This procedure yields excellent pointwise results (HM
1996, 1997, 1998a, b, 1999). However, it does not offer a manifestly global representation
of the underlying multiscale contributions that generate the local, pointwise, structdre of
(as represented in Daubechies’ dyadic expansion in equation (1.9), or the alternative DCWT
representation derived in section 3). This is where wavelets make an important contribution.
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The above formalism is manifestly non-wavelet. However, it has been shown (HM
1998a, b) (and briefly rederived in section 3) that asymptotic moment limits of the above
type correspond exactly to the CWT signal-wavelet inversion formula:

W(b) = 3/ d—“/ dgz)(ﬂ> WW(a, ) (1.4)
vJo az J—oco a
where the wavelet transform is defined by
WW(a, &) = %/w dx W (%) W(x) (1.5)

involving a suitablenotherwavelet function)/y(x), with corresponding dualD(x).

In terms of their Fourier transforms (i.8V(k) = J% [ dk e~ W(x), etc) the mother
wavelet and dual are acceptable so long as the product of their Fourier transforms satisfy the
relation,

—koy S(k) = V20N (k) D (k) (1.6)

whereS is an arbitrary well-behaved, integrable function that must satisfy [ dx S(x) # 0.

So long asV andD define a satisfactorgcaling functionS, equation (1.4) holds. Different
choices of scaling functions will affect the integrability characterstic of equation (1.4) (refer
to the discussion following equation (3.2) for clarification of this point).

All of the problems studied by HM use special, infinitely differentiable, scaling functions
whose closed-form structure allowed them to bypass the explicit consideration of mother
wavelet and dual functions. However, in principle, faster recoveny @) can be achieved
by selecting a mother wavelet and dual function whose associated scaling function may not
have the aforementioned ‘nice’ properties (i.e. finitely differentiable and/or not obtainable in
closed form, etc). In such cases, the HM formalism can only generate the wavelet transform,
which must then be integrated through the inversion relation given in equation (1.4). The two-
dimensional integration character, of such an inversion procedure is numerically unattractive
and motivates the desire to obtain an equivalent DCWT formalism, as presented in this work.

If one regards the translated and scaled copies of the dual function as a basis,

B= {D (“’%a;b> la >0, b < oo} (1.7)

it is overcomplete, since different choices of mother wavebats, lead to different sets of
wavelet transform coefficient§W; W (a, £)la > 0, || < oo}, each generating the same
configuration .

Many of the popular mother wavelets correspond to expressions of thetpe =
Noie 2w = Z,J‘:o Cjx/e 2 fori > 1, andQ(x) as defined previously. It then follows
that the wavelet transform is a linear superposition of the moments

1 ¢
W, b) = == 3 | Jiitas(). (1.8)
j=0

For rational fraction potential problems, the momefis ,(p)|p > 1 +m;} linearly
depend on thenissingmoments,{i, »(£)|0 < £ < m,}. Once the latter are determined
through MQ analysis and integration of equation (1.2), all of the moments, for a given scale
and translation(a, b), are determined, as well as the wavelet transfding; (a, b).

Knowledge of the wavelet transform allows us to view equation (1.4) as a global
representation of the multiscale contributions definining the local structdrexth. However,
the continuous two-dimensional structure of this integral representation can make any ensuing
analysis difficult. For this reason, the realization of a discretized analogue is important. To this
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extent, the works by HM cite Daubechies’ dyadic approximation, foMbgican hatmother

wavelet and dualV, (x) = D;(x) = —Nhafe‘g whereN,, = \/3277?:
2 1 x—j2
) N —— f— —_— 1.9
x) 6.819;Wl"’ N < 2 ) (1.9)

wherew, ; = W (2, j2').

The structure of this relation is very appealing, since it suggests that the dyadic copies of
the (wavelet) dual define a basis. However, the limited use of this dyadic formula failed to
yield as good a convergenceddb) as did the integration of equation (1.2) combined with the
asymptotic formulae in equation (1.3). Indeed, from an MQ perspective, equation (1.9) is an
approximation to the exact expression. Refer to the discussion pertaining to equation (3.21).

We clarify this important point. Let Rez (0, co) x (—o0, +00) denote the subset of
the (a, b) wavelet transform parameter space within which the Runge—Kutta (RK) integration
of equation (1.2) is numerically stable. Then HM’s investigations showed that the generated
W,,; wavelet coefficients corresponding @@ = 2/, b = j2') € Re, for a limited range of
(1, j) values, did not reproduce the quantum configuration states as well as the asymptotic
estimates corresponding to equation (1.3). In order to better understand a possible source
for this discrepancy, we were motivated to understand (from the MQ perspective) the exact
structure of the DCWT representation for equation (1.4).

One of the results of this work is the derivation of the exact DCWT representation
of equation (1.4), from the MQ perspective. This is done in section 3 (refer to either
equation (3L9), (3.20), or (3.22)). The DCWT formulation to be presented yields comparable
results to those published previously by HM, when used to the same expansion order, and
improves upon these when the expansion order is increased (i.e. when greaters are
allowed). This is discussed in section 4.

2. Moment-wavelet quantization

In this section we develop more fully some of the key concepts essential to this work. The
technical details are given in the cited references.

The multiscale efficiency of wavelets derives from its key objective: to understand the
interplay between ‘dynamical’ structures at different scales, particularly in terms of how larger-
scale effects impact smaller-scale behaviour. A simple relation that captures the essence of
this is the generalized moment expression:

Uy = %/de (x - b) W(x) 2.1)

a

involving the (unknown) bound state wavefunctidn,and a sufficiently well-behaved kernel
(‘scaling’) function,S, satisfyingy = [ dx S(x) # 0 and|v| < co. The scale and translation
parameters are > 0 andb € (—oo, +00), respectively. In the small-scale (continuum) limit,
we have

. Uy p
Lim,.o—
a

= W(b). (2.2)

As previously noted, this simple asymptotic relation directly leads (and is equivalent) to
the standard signal-wavelet CWT reconstruction formula in equation (1.4).

We may view equation (2.2) as an analytical microscope by which the pointwise behaviour
of W (b) is generated through successive ‘fine tuning’ of the scale parameter variable defining
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U, 1, starting az = oo and proceeding ta = 0. These types of expressions were studied, in
a similar context, almost 20 years ago by Handy (1981).

In order to understand the interplay between the various scales (i.e. how effects at scale
‘a’ affect things at smaller scaleg, < a), it is natural to study the differential expressions

Doy = ——— / dx (x — b)S® (x - b) W(x) (2.30)
va a

ey = —— [ dxs® <ﬂ> W(x) 2.3)
va a

and their higher-order generalizatiadj; 9,4, ,, which involve the summation of integrand
terms of the form(x — b)?S@ (22), (i.e.9S = S'@) for varying combinations op andg.

Relating all of these differential expressions is greatly simplified if the scaling function
satisfies

9, S(x) = Pp(x)S(x) (2.4)
whereP, (x) is a polynomial (i.eS(x) = e 2™, for an appropriate polynomiaf). Under
this assumption, it is then sufficient to consider the multiscale interactions of the generalized
moments

tas(p) = /dx X’ (f) W(x +b). (2.5)
a
In the infinite-scale limita — oo, these converge to finite sums involving the moments:
p
LimM, oo s (P) = toos(P) = Y (i) (=b)""u(p) (2.6)
p=0

Where<1;> = (pfﬁ andu(p) = [ dx x W (x), assumings(0) = 1.

One convenient feature of the, , (p) is that for a broad class of scaling functions (not just
those corresponding (x) = e~ 2™ whereQ is a polynomial), in any space dimension, the
moments will satisfy a finite difference equation i, of order 1 +m, that is straightforward
to generate and solve through MQ analysis.

Limiting the discussion to one dimension, for simplicity, consider the&@tihger operator
eigenenergy problem

—2W(x) + V()W (x) = EW(x) (2.7)
where the potential is a rational fraction
T N g
Vix)= M (2.8)

Y oD()xi
The configurationd, , (x) = e~ 2@ W (x +b), also satisfies a second-order differential equation

2 2 _,/x 1 L (X AN

- <3x<1>a,b(x) +20/(2) 0. 0up@) + [Q )+(2 (%)) ] <I>a,b(x)>
+V(x +b)Dyp(x) = EDyp(x). (2.9)

Through the standard MQ formalism (Tymczakal 1998a, b, Handt al 1988a, b,
Handy and Bessis 1985), one can transform this differential equation into a homogeneous,
linear finite difference equation of order In% (m;, = Max{T, B} — 1) for the moments of
D, »(x), thep, ,(p). As such, the momen{ge, ,(p)|p > m, + 1} will be linearly dependent
on the first 1 m; moments (themissingmoments){u,.»(£)|0 < £ < my}, as represented by

my

Map(P) =Y Map £(p, ) ttap(t) (2.10)
(=0
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where p > 0, and the energyE, dependentV-coefficients are readily obtainable. Self-
consistency requires that for the missing moment indices we lidyg:z (€1, £2) = 8¢,.¢,, fOr
0 < €, b < my.

So long a0 (x) (i.e. a rational fraction) grows slower (in any complexlirection) than
the JWKB asymptotic estimate (Bender and Orzag 1978 th&p), will be regular ine = %
making the integration of equation (1.2) free of any singularities near the origin with respects
to thew, inverse scale, independent variable. The case of the Bohr potential (via the Mexican
hat wavelet) differs from this, as discussed in HM (1997).

Taking all the above into account, and further restrictidgre) to be an even degree
polynomial, Q(x) = Z;fi’o E(n)x", we obtain equation (1.2) as follows. Consider the first-
order derivative relations (note that, ,(p) = taw@).»(P)):

B e (P) = O / dx x?e 2@y (x +b) (2.119)
or
Bl (p) = — f dx x”** Q' (ax)e” 2O (x + b) (2.11b)
becoming
2N
duflap(p) = — Y na" TE (M) jap(p +n). (2.1
n=0

From equation (2.10), upon making the appropriate substitutiop,(p + n) =

my

tooMap.e(p+n, 0y, (£), we obtain

my 2N
Outtan(P) = ) ( — Y na" TEM) Mo £ (p +n, z))ua,b(z). (2.12)
=0 n=0
Restricting 0< p < my, we obtain (i.e. equation (1.2))
Meb(0) Moyole, b, E] - - Mom,[e, b, E] Meb(0)
Ma,h(l) M]_,O[a, b’ E] e Ml,m; [as bv E] I’Lﬂl,h(l)
o = (2.13)
Ma,b(ms) Mml,O[Ofv b, E] T Mml.mj [05, b, E] Ma,b(ms)

where theM,, 4,[a, b, E] matrix elements are defined through equation (2.12).

Utilizing any of the various MQ formalisms (Handy 1999a, Hardywl 1999, Tymczak
et al 1998a, b, Handyet al 1988a, b, Killingbecket al 1985, Handy and Bessis 1985,
Blankenbecleet al 1980), we can determine the physical bound state energy and corresponding
(infinite-scale) missing moment#,, {1 (£)|¢ < m,}, respectively. Through equation (2.6),
these missing moments can be used to determine the infinite-scale missing moments at point
b, {na=0p(®)|£ < myg}. In this manner, we can integrate equation (2.13), and through
equation (2.2) recover the pointwise structure of the bound state configurétibn, More
generally, solong as(p) = [ dx x”S(x) # 0, one has a larger number of asymptotic relations
through which to recovew (b):

LiM g o0 (@ 10,5 (p)) = v(P) ¥ (D). (2.14)
It is also possible to determine the energy and missing moment values directly from
equation (2.13), this is discussed elsewhere (Handy 1999b, Herad{999).
We will use the above formalism to generate the wavelet transform coefficients for the

dyadic scale and translation parameter values required in the MQ-DCWT reconstruction
formula(e) derived in the following section.
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3. Deriving the CWT/DCWT inversion formulae

3.1. The CWT transform and its inverse

As noted in the previous sections, the asymptotic relation in equation (1.3), or equation (2.14),
yields a pointwise convergent formalism for recovering the physical wavefunction
configuration. This approach works very well, as documented in the various cited works
by HM. We want to generate a global reconstruction formalism which manifestly incorporates
the multiscale features inherent to the representation in equation (1.3). We briefly review the
derivation of the inverse CWT transform formula given by HM (1998a, b). We will use this in
motivating the inverse DCWT transform formula(e) derived in section 3.2.

Consider the generalized, affine (convolution) transform, of a configurdtian

Usla, b] = %/m OL—XS (x ;b> W(x). 3.1)

o0

Note thatUs[a, b] = 14, 5, as defined in equation (2.1).

The scaling function§, is arbitrary, provided it is integrable and its zeroth-order moment
is nonzero ¢ = v(0) # 0). Also, for our purposes, it must be differentiable. The zero-scale
limit becomes

LimaﬁoUs[a,b] = Y (b). (32)

Clearly, this relation emulates the Dirac integfalx §(x — b)¥ (x). The rate of convergence
is determined by the choice &f. Generally, faster convergence¥ois determined by the
extent to whichv(i) = [dx x'S(x) = 0, for 1< i < I. The greater isI’, the faster is the
convergence. This is readily apparent upon shiftingcby> x + b, performing the change
of variablesy = =, and expandingv (b +ay) = ) _,_, w all within the integral for
Usla, b]. '

We can rewrite equation (3.2) as

_/00 da 0,Us[a, b] = ¥ (b) (3.3)
0
sinceUg[oo, b] = 0. Substituting equation (3.1) yields
w(b)zifood—‘z’foo dxf<ﬂ> W(x) (3.4)
v/]o acJ_ a
wherea 2F (22) = —9,[2S(22)] = a 2(S(£2) + LS (£2)), or
F(z) = 0.[zS8(2)]. (3.5)

The relation in equation (3.4) only integrates over all scales. In order to obtain a result
which also integrates over all translations, one must rewigss a convolution integral:

()= Lo () () @9
a o0 a a a
(note the rhs= ff‘;o dfi)(%)W(%)) for arbitraryyV andD, provided the respective Fourier
transforms satisfy

Fk) = V2nW(k)D(k). (3.7)

Inserting equation (3.6) into (3.4) results in
1 (®da [* -b
vor=1 [ dm(s—) WW(a. &) (3.80)
VJo a2z J-x a
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where

1 [ _
We@e =2 [ w (%) W (x) (3.80)

denotes the wavelet transform ot
Combining equations (3.5) and (3.7) one obtains

—kdS(k) = V271 W(k)D(k) (3.9)

as cited earlier. Note that(0) = 0, from equation (3.5); consequently, one assumes that
W(0) = 0.

3.2. The DCWT inversion algorithm

The first important observation in defining a discretized counterpart to equation (3.8) is to
define a general partitioning for equation (3.3):

W(b) =Y (Uslas, b] — Uslai1, b]) (3.10)
l

where—oco < | < +o0o, anda; < aj+1. Thus, Lim_, _sa; = 0%, and Lim_,+ecaq; = +00.
In terms of the kerne$ the above partition becomes

1 oo 1 —b 1 —-b
W) =~ Z/ dx (—3 (x ) _ =5 (x )) U, (3.11)
Ve o a a aj+1 aj+1
We have implicitly assumed the variablg to be arbitrary. At thdth scale value,d;’,
let us define the representation
b= nl[b] A+ 31[19] (312)

(|%ﬂ| < 1), whereA,; is some suitable sequence of non-negative values (to be determined),
andn,[b] an appropriate integer expression.
Let us now conjecture that for eaahscale we have

(13 (x ‘b> s (x "’)) = Y Dbl - ) Witx - 7)) (3.13)

ai ai aj+1 ai+1 j=——oo

involving the linear function,” (j) = A; x j +&[b], as well as the (to be specified) discrete
function,D(j), and the continuous function®) (x).
In order to assess the validity of these relations for e#d¢hve first transform them into

their Fourier space equivalent:

e Sk — S(awk) = Y Dlb] - Hhie (3.14)

j=—00
or (upon relabelling the integer summation index)
o0
e NS @h) — S@ak) = Y- DWihkye 4 D, (3.14)

j=—00
Upon substituting,” (n,[b] — j) = A, x (ni[b]— j)+8[b], and noting thab = A, xn;[b]+8,[b],
equation (314b) simplifies to

o0

(S(ark) — 8(as1k)) =[ > D(j)ékf“}wl(k) (3.15)

j=—00
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We can simplify the understanding of equation (3.15) if we defjne ";—]1 > 1 and make
the corresponding change of variables, resulting in

A A o AL ~ k
Sk~ S(aik)) =[ 3 (et f"}wl (—> (3.16)
a

j==o0

Since equation (3.16) must hold for &ll,'the simplest choice is to take = p > 1, ﬁ_/ = f,

andVAVl(fI) = Wo(j—o), involving constantifindependent) expressions on the right-hand side.
Summarizing these, we have

a; = aop’ (3.17a)
A= fa; = faop' (3.1%)
and
Wik) = W (ﬂk> = Wo(p'k) (3.17)
ap

or, in terms of the configuration space transforms:
1 X
Wix) = - Wo (—Z) . (3.1)
P o

The above equations define the generaldic representation.
It therefore follows that the only remaining relation to be validated is equation (3.16)
rewritten according to the above constraints:

(Sk) — S(pk)) = R(k) (3.1%)
where
N 0 S k
= Nl fik -
R(k) = [gwj D(j)el }wo <ao). (3.180)

The above relation constrains the three functiof&), Wo(k), and Yk =
3% . D(j)el*, whichis periodic. Asinthe CWT case, acceptable choicesfpandD ()

j=—00
must generate a scaling functix), whose zeroth moment is nonzero= [ dx S(x) # 0,
and otherwise well behaved (i.e. integrable, Fourier transformable, etc). We shall be working

with p = 2 (i.e. the dyadic case), = ap = 1, D(j) = —/\/ﬁfefé = N,(1 - jz)efé,

andWp(x) = —Nhafe‘§ or Wo(k) = Nyk%e . For this case, the analysis detailed in the
appendix yields ~ 3.427. In addition, the form of thg-space scaling function is depicted
in figures 1 and 2.

3.3. DCWT reconstruction
The DCWT reconstruction of the wavefunction follows upon incorporating equations (3.13)

and (3.17) into (3.11) (recalb, = n,[b] faop' + 8;(b)):

1 +00 +00 +00
W)= 37 Y Deulbl - j) / Wil - (W) (3.1%)

|=—00 j=—00

or Wi(x) = 3 Wo(3))-

1 & & 1
V) == Y ¥ Doulbl = H—=W¥ (', faojp' +8[b)  (3.1%)

l=—00 j=—00 \/:(7
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Figure 1. k-space plot of scaling function.
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whereW W (o', faojp! + 86D = — [ dv Wo(=L Ll o),
P

There are several variations on equatiorl8) of interest to us. The first involves
i [b]x Ar+8[b] — j x Aj—8[b]

rewriting the argument of th® function according tay,[b] — j = A or
nlb] —j = ”‘fxif‘“”] = ff}‘zg —4lb - sybstituting in equation (B9) yields
- b — faojp' —31[19]) 1 I 1
v(b) = ( — WY (o', fa +5,[b]). 3.20
I;Oj;w Faog! 7 p', faojp +8i[b] (3.20)

If the wavelet transform is concentrated at sufficiently small scales, then the above expansion
simplifies since Lim., _»8[6] — 0 (and Lim_, _.n[b] — o0). One then obtains the dyadic
structure quoted in equation (1.9):

o e b— faojpl)
V(b) ~ — ww — . 3.21
(b) ~ ,_Zoo ]_Zoo (o', faojp") f ( Faop (3.21)

Taking fao =1 p =2 W) = —J\/’haze** (i.e. Wok) = Nyk2e z) andD(j) =

—/\/,13 ez, we recover the (approximate) dyadic expansion in equation (1.9).
Another possibility is to transform equation (3.19) into the form

+00 +00

V() = Z > D(;)—W\If(p b— faojp") (322)
1_7001_700 f

whereWW (p!, b — fagjp') = " dx WO(M)‘I’(X)

«/_ S
If U corresponds to an atomic measuve(x) = Zi:l Ai8(x — B), with u(p) =

[dxxPW(x) = ZiI:l A; (B)?, then the wavelet transform integral can be transformed into

a superposition of dilated and translated versions of the derivatives of the mother wavelet

expression:

S X D(J)M(P) (p) fQOjIOl -b

vin=2 Y 3 3 DDAy (feif by, 629
1—7001—70017—

3.4. An alternative formulation

Returning to equation (3.11), we do not have to define our partition ending at +oc.
Instead, we can take.; = +oo, anda; — O, forl: 0 — —oo. We can use the same formalism
as before, taking, = ”;—11 forl < —1. Again, upon taking, = p, a constant, we obtain

a; = app'. The reconstruction formula in equation (3.22) would then become

W(b) = [ /d 8( )‘I/(x)+z Z ﬂww(p b— fagjp )} (3.24)

I=—1j=—00
4. A numerical example

We illustrate the MQ-DCWT formalism by applying it to the ground state of the quartic
anharmonic oscillator problem defined by the potentigt) = mx? + gx%, g = 2. The
specific MQ formalism for this problem is presented within the general anharmonic oscillator
problem ¢ > 2) formalism, for completeness. A fuller discussion is given elsewhere (HM
1998).



8122 C R Handy and R Murenzi

Table 1. Energy and missing moments.

u =0,2)
Vi(x) E (u(odd) = 0)

x?+x* 13923516415 0.6426706223
0.3573293777

Translating the Sclidinger equation by?’, and working with the configuration
D, ,(x) = e‘W‘Z\IJ(x + b) (for the Mexican hat wavelet case), where= ﬁ results in
the differential equation

—[02 + 4y xd, + {2y + 4y?x?)] Dy 4 (x)
2
+[m{x2 +2bx +b%) +g Yy <2i‘1 )qul’xl'] ®, 4(x) = ED, ,(x). (4.1)
i=0

The power moments of interest ate ,(p) = ffooo dx x”®,, ,(x). Multiplying both sides
of equation (4.1) by? and performing the necessary integration by parts, one obtains the
moment equation

—p(p — Dty p(p — 2) + [y (bp +2) + mb? + gb* — Elju, 5(p)
+[2bm + 2ggb* M, »(p + 1) +[m — 4y® + gq(2q — Db* ], 4(p +2)
2q-1

gy (2;] )bz"‘iuy,b(p +i)+gp, »(p+29) =0. (4.2)
i=3

The missing moment order is, = 29 — 1. One can then define tidé, , z(p, [) coefficients
in equation (2.10), which must also satisfy equation (4.2) for fixad well as the initialization
conditionsM,, ; (i, j) = §8; ; for 0 < i, j < my.

For the quartic anharmonic problem, the ground state energy and missing moments
wy=0,0() were determined through the eigenvalue moment method of Handy, Bessis and
co-workers (1988a, b). A recent generalization of it also facilitates the analysis of excited
states (Handy 1999a). Another possible approach is to use the quantization methods in the
work by Tymczaket al (1998a, b). As previously noted, all of these determine the energy
and missing moments before the coupled moment equations (i.e. equation (1.2) or (4.3)) are
integrated with respect to the inverse scale variapleAlternatively, other recent methods
use equation (4.3) directly in order to determine the energy and missing moments @dahdy
1999, Handy 1999b).

We will assume in the following numerical analysis that the energy and missing moments
have been determined prior to integrating equation (1.2). For the case of the quartic anharmonic
oscillator, the relevant equations (analogous to equation (2.13)) become

Hy.5(0) 0 0 -1 0 Hy.5(0)
i My,b(l) — 0 0 0 -1 My,b(l) (4 3)
ay | 1y.s(2 Maoly]l Maaly]l Maoly] Moasly] Uy p(2) | '
My, (3) Mszoly] Maza[y]l Maoly] Masly] My.5(3)

The specification of the matrix coefficients are given elsewhere (HM 1996).

In table 1 we quote the physical energy and missing moment values for the ground state
of the quartic anharmonic oscillator. Utilizing these as initial values in the integration of
equation (4.3), we can integrate the coupled moment equations up to any finite inverse scale
(y < o0) and translation values{oo < b < +00). Note that equation (2.6) is implicitly used
in determining the required, o ,(p).
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Table 2. Asymptotic estimates fol ().

3

Y 22
sy by Ty b @ Ty b2 Yiued)
10% 0 26 0.322 0.314 0.325
1 25 0.152 0.154 0.151
2 24 Q839%—2%) 0.112(-1) 0.705—2)
3 23 Q143(—4) 0.364(—4) 0.610(—5)
4 30 0376-6)  0.677(-5)
104 0 84 0.325 0.323 0.325
1 83 0.151 0.152 0.151
2 82 Q74A-2)  0822—2)  0.705—2)
3 81 Q777(-5) 0.117—4) 0.610(—5)
4 29 Q462(—6) 0.506(—5)
10° 0 200 0.326 0.325 0.325
1 200 0.151 0.151 0.151
2 200 Q7171-2) 0.751(—2) 0.705(—2)
3 200 0665-5) 0.808(—5) 0.610(—5)
4 30 Q390(—6) 0.440(-5)

@ To the power of ten.

Knowledge of the moments allows us to determine the Mexican hat wavelet transform
for scale and translation values required in any of the DCWT reconstruction formulae cited
in section 3.2 (i.e. equations (3.19)—(3.24)). The specific reconstruction procedure adopted

here utilizes the Mexican hat wavelet and dual function expres3iyis) = — N, afe‘é =

pS 2 . .
No(x? — De %, D(j) = N;(j2 — 1e~ =, respectively A, = \/%_F), for dyadic parameter
values,p = 2, fap = 1. The Mexican hat wavelet transform is given by

Wl¥(a(y), &) = (2)/)71‘Nh(/iy,s(0) — 2y iy £(2)). (4.4)
Two important relations are the asymptotic expressions (i.e. equation (2.14))
Limy»oo\/gﬂy,b(o) = W (b) (453-)
and
. 2)/%
ley%mﬁp«y’b(Z) = \p(b) (45))

We can integrate equation (4.3) using Runge—Kutta (RK) methods. In table 2 we compare
both asymptotic estimates fdr(b), for various RK step sizesy .

For a givensy (the RK integration step), the RK integration with respectg,tfor fixedb,
became unstable for values beyond those cited in table 2 (with the exception of tee200
values quoted). From equation (3.22), at a giveralue, we want to sum over the DCWT
terms, W (2', b — j2), for which the scale and translation values=%£ 2/, &£ = b — j2,
respectively) are within the numerical stability region of our RK integration.! As +oo
(¢ = o0, 1 = 0), our RK analysis suggests thatan be arbitrary. However, s> —oo
(q — 0,y — o0), then the results in table 2 limit the translation values accordingly. In
figure 3 we compare the true ground state solution (normalized accoddify = 0.325,
Handy and Murenzi (1996)) with the expansion in equation (3.22). Tla@d ‘j’ summation
indices were chosen to be consistent with the aforementioned numerical stability requirements
as well as: —10 < / < 30 and|j2/| < 5. Also,8y = 10*. The numerical results are
satisfactory and validate our formalism.
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0.36

0.3

0.24

= 0.18

0.06

prrt i bt v ey b

OO LA T O B A B B

0.0 Q.7 1.4 2.1 2.8 3.5
X

Figure 3. DCWT approximation of ground state:92W (x) + (x2 + xH) W (x) = EW(x).

5. Conclusion

We have shown how MQ naturally leads to an exatiaglic) discrete—continuous wavelet
formulation for reconstructing the wavefunction corresponding to arbitrary, one-dimensional,
rational fraction potential functions.
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Appendix. (Analysis of equation (3.18))

As noted in section 3, the relations in equationd ), (3.18b) constrain the three functions
S(k), Wolk), and Y (k) = Y72 D(j)€//*, which are periodic. Acceptable choices for

Wo and D(j) must generate a scaling functiofi(x), whose zeroth moment is nonzero,
v = [dxS(x) # 0, and otherwise well behaved (i.e. integrable, Fourier transformable,

etc). We shall be working withh = 2, f =ap =1,D(j) = —Nﬁfe*é =N, (1- jz)e*%
andWo(x) = —N; 826~ or Wo(k) = Nypk?e~ . Recall thatR (k) = T (k) Wo(k).
For future reference, under the above conditidifgk)| < Zj |D(j)| < oo. Also,
Wsk) = Y Wolp'h) = Nik? Y (07 & 24 (A1)
=0 j=0

J J



MQ and LDCWT 8125

converges, foik # 0, by the ratio test (i.e. exp-2k%[p? — 1]p%) — 0, asj — o).
Furthermore, Lim.Ws(k) = 0, since for a sufficiently largd, andj > J, we have
p% > 2jp + Cy, for the positive constar@; = p?/ — 2Jp. This then yields

J-1
Ws (k) < Nhk2< DAY e S e ZH’*CJ]’) (A.23)
j=0 j=J

or

(A.2b)

e—%kz(CJ+2,oJ)
1— p2e=rk? )

J-1
Ws(k) < Nhk2<2(p Ye 3 (kp?)? +p2

providedp2e %" < 1.

Consider the infinite sequence of poikfg’, fori € (—oo, +00), andk, € (1, p]. Clearly,
all points along the positivie-axis can be related to somandk, value. Takings; = S(k.p)
(whereay is arbitrary), we obtain

0i+1 = 07 — R(kup"). (A.3)

Thus, knowledge of ., determines all the; values. We shall return to this in equation (3)8

If we assumeR (k) is continuous ak = 0, then equation (A.3) becomes (approximately)
oiv1 & 0; — R(0) which leads to the asymptotic limi; = c(k,) — (R(0))i, asi — —oo.
Therefore, to avoid unbounded solutions, we require that

R(0) = T(0)Vo(0) = 0. (A.4)
The general solution to equation{8q) is of the form
S(k) = Qk) +P(k) (A.5)
whereQ(k) = Y2, R(p'k) andP(k) = Y1° ¢, €' | is an arbitrary, geometrically

periodic function,P(k) = P(pk) (0 > 1). Note thatP(k) is the general homogeneous
solution to equation (38z) (corresponding to an arbitrary, conventionally periodic solution
in the variable Iitk), with period In(p)).

Through the analysis presented in the context of equations (A.1)5YAr2 can argue that
Q(k) exists and is asymptotically zero, as> co. Since it corresponds to a special solution
to equation (3L8a), it will be geometrically periodic at the origin (with infinite derivatives),

Lim s oo (Qkp~ ) — Q(kp™")) = 0 (A.6)

as well as discontinuous at= 0, despite the fact thak (0) = 0.

Just a2 (k) becomes nondifferentiable &s— 0, so too will the general homogeneous
solutionP(k) (other than the trivial constant solution). However, it is possible to combine
both to produce a special analytic solution.

If we conjectureS (k) to be analytic, then it is uniquely determined, up to a constant. In
this caseR (k) is also analytic Let

Sk) = Z@( ik)" (A.7a)
n>0 )
and
. 1 &
Rk = —— = (—ik)" A.7b
(k) m;r( i) (A.7b)
then

[1- p”]Lrll) =1,. (A.7¢)
n!
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Note that self-consistency requirg50) = J%ro = 0. Furthermorey(0) is undetermined
and arbitrary. Application of the ratio test readily shows that the radius of convergence for

S(k) is determined by that foR (k) sincenﬁl”(’z:)l) — I asp — +00.

Denoting this special (up to an arbitrary constant) analytic solutio§, %), it must be
representable in terms of the general solution given in equation (&6@) = Q(k) + P, (k),
for a special geometrically periodic configuratidh k), capable of smoothing out the infinite
oscillations, at the origin, exhibited l8y(k). Since2(k) — 0, ask — oo, thensS, (k) becomes
geometrically periodic at infinity and nonzero.

Clearly, from the entire preceding analysis, the only special solution is the one
corresponding to

LiM i 4008 (k) — O (A.8a)
as defined by2. In terms of the iterative representation in equation (A.3), we have
Lim,'*)+000',' =0. (A8b)
This means that we will be taking
Stky =Y R(p'k). (A.9)
i=0

We can generate this solution directly from equation (A.9) (which would entail two series
summations, one for generatirig), the other for generating equation (A.9)), or through a
numerical iteration based on equation (8).8We adopted the latter, as explained below. Note
thatS(k) = S(—k) (becaus&R (k) = R(—k) and equation (3.8)).

The zeroth moment of the scaling function(0), is required in any signal-wavelet
reconstruction formulation. The speci(lk) solution being considered has an inverse Fourier
transform (i.e. becauss(k) is asymptotically bounded)§(x). However, becauss8 (k) is
not analytic at the origin (due to its geometrically periodic nature), we cannot determine
S's zeroth moment from the usual relation(Q) # +/2738(0)). Neither can we take
v(0) = V2rLim_o(2£ [7 dk S(k)), sincev, = = [* dk S(k) would be geometrically
periodic as well, and not have a limit as— 0". To see this, consider any geometrically
periodic function,P(k). Lete = kop, then v [P] = \/_Z ©r % /2m%, where

PN
o= pkO dk P(k), andx = ko(p — 1). Accordingly, ve(ko)[P] ‘/ﬂfl dk P (kok), which is
geometncally periodic irkg, with geometric periog.
We are then forced to take the logarithmic average

v(0) = V21 leHof ) ik‘:k(k) (A.10a)
. s
v(0) = V21 Lim|n(e)—>—w% (A.10b)
for arbitrary A. This is equal to "
In(e A
v(0) = V2T Lime_)ofln((d)'mjf 5@ (A.100

The justification for taking the logarithmic average is as follows. Consider defining the
zeroth moment of the inverse Fourier transform functi®,), in terms of a limiting process
(e — 0) for the integral

f e R \(0)S(x) = f " R (S () (A.11)
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whereS (k) = S(—k) and R x (k) = R. A (—k). Let

0 k| < €
Roahy={ Y2 _ < |kl < A A.12
(k) In(§)|k| € < |k ( )
0 k| > A.

This reproduces equation (A.40 We now show thaR, 5 (x) becomes unity in the — 0
limit.
The regulating functioiR, 4 (x) is given by the inverse Fourier transform integral
1 A
Rop(x) = T f dk €% R, (k) (A.13a)

which becomes

1 A
Rea(x) = m%(/ dk

This expression is related to the exponential integral (i.e. Abramowitz and Stegun 1972).
Clearly,R. »(0) = 1, and Lim., o R A (x) = 0. Ase — 0, R. A (x) — 1since

ezk ) (A.13b)

Rop(x) = 1 Re(fﬁdkeixek> (A.14)
ST S S U R |
yields the expansion
1 (—=1)zx"
R. =1 ———— (A" =€) ). Al
A +'n(%><n;4,___ S (A" e >) (A.15)

For the specific case being considered here g.e= 2, a0 = f = 1, D(j) =

Ny (1 — jz)efé, andWy (k) = Nhkzefg), figures 1 and 2 show the estimatesdor ., (k.),
according to the numerical procedure previously suggested. Thatis, upon chiqosigg 2],

we determined thé (k,) value satisfying equations (Ad (A.8b), for 0 < i < +oo. Using

this S(k,) value, we recursively generate backwards, corresponding to—~ —oco. The
limiting values of this procedure are given in the cited figures. The bounded, oscillatory,
nature ofS(k) (corresponding to equation (A.9)) is immediate. Using equation (@, 1Be
valuev ~ 3.427 is obtained, which compares well with Daubechies’ estima@%@f: 3.410

as given in equation (1.9).
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